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ABSTRACT  

 

Accurate smartphone-based outdoor localization system in deep urban canyons are increasingly needed for various IoT applications 

such as augmented reality, intelligent transportation, etc. This article proposes a multi-material image registration solution for 

accurate pose estimation in urban canyons where global navigation satellite system (GNSS) tends to fail. In the offline stage, a 

material segmented city model is used to generate segmented images at each pose (six degrees of freedom of position and rotation). 

In the online stage, an image is taken with a smartphone camera that provides textual information about the surrounding environment. 

The approach utilizes computer vision algorithms to rectify and manually segment between the different types of material identified 

in the smartphone image. The hypothesized poses (candidate) images are then matched with the segmented smartphone image. The 

candidate image with the maximum likelihood is regarded as the estimated pose of the user. The positioning results achieves 2.0m 

level accuracy in common high rise along street, 5.5m in foliage dense environment and 15.7m in alleyway. A 45% positioning 

improvement to current state-of-the-art method. The estimation of yaw achieves 2.3° level accuracy, 8 times the improvement to 

smartphone IMU. 

 

1. INTRODUCTION  

 

Urban localization is an essential step to the development of numerous IoT applications such as digital management of navigation, 

augmented reality, commercial related services [1], and an indispensable part of our daily lives due to its widespread application [2]. 

In the context of outdoor pedestrian localization, the application of global navigation satellite system (GNSS) is the key technology 

to provide accurate positioning/timing service in open field environments. Unfortunately, its positioning performance in urban areas 

still has a lot of potential to improve due to signal blockages and reflections caused by tall buildings and dense foliage [3, 4]. 

 

Standing at the point of view of how a pedestrian navigate him/herself, we human beings, also locate based on the visual landmarks 

that consists of different semantic information, and each semantic has a material of its own. Inspired from that, our proposed novel 

solution is the multi-material image registration utilizing different types of materials that are widely seen and continuously distributed 

in urban scenes. The proposed method offers several major advantages. Firstly, we can take advantage of building materials as visual 

aids for precise self-localization. Secondly, with the use of building information modelling (BIM), it does not require pre-surveyed 



data, hence it is highly scalable and low cost. Thirdly, the semantics of materials are stored as a vector map, making it simple to 

update and label accurately. Lastly, the proposed method identifies and considers dynamic objects into its scoring system. 

 

The remainders of the paper are organized as follows. Sect. 2 explains the overview of the proposed multi-material image registration 

approach. Sect. 3 describes the experimentation process and the improvement of the proposed algorithm verified with existing 

advanced positioning methods. Sect. 4 contains the concluding remarks and future work. 

 

2. PROPOSED METHOD 

 

An overview of the proposed multi-material image registration method is shown in Fig. 1. The method is divided into two main 

stages: an offline process, and an online process. In the offline process, the building models are manually segmented into different 

colors based on the material, which grantees a perfect representation of the materials in the 3D city model. The segmented city model 

is used to generate an image at each pose. In the online process, the user captures an image with their smartphone, with the initial 

pose estimated by the smartphone, candidates (hypothesized poses) are spread across a searching grid based on the initial pose. The 

smartphone image is then rectified and segmented based on the identified materials in the image. The segmented smartphone image 

is de-rectified and matched with the candidate images using multiple metrics to calculate the similarity scores. The scores of each 

method are combined to calculate the likelihood of each candidate. The chosen pose is determined by the candidate with the 

maximum likelihood among all the candidates. The details of the proposed method are described in the following section. 

 

 
Fig. 1. Flowchart of the multi-material image registration based on segmented smartphone image and segmented generated images. 

 

2.1 Textured & Segmented BIM 

The city model used in this research is provided by the Surveying and Mapping Office, Lands Department, Hong Kong [5]. Each 

building model has its own corresponding 2D vector map in JPG format that provides textural information of the building.  The 

building vector maps were manually labelled, in which each pixel in the texture image is assigned a color for the material it represents, 

which can then be used to simulate a segmented 3D city model as shown in Fig. 1. In this research, we used six classes in total to 

test the feasibility of the proposed method, each class has their own respective RGB color: Sky (black), Stone (blue), Glass (green), 

Metal (orange), Foliage (yellow), Others (light blue). The building vector maps were labelled manually with the Image Labeler 

application, which is part of the Computer Vision Toolbox, MATLAB [6].  

 

2.2 Image generation 

Images were generated from the segmented city model to match with the smartphone image. Equation (1) denotes the process. 

𝐱 = {𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡, 𝜓, 𝜃, 𝜑} 

𝐼𝑚𝑔𝐱
3𝐷𝑀_𝑠𝑒𝑔

= 𝑅𝐿_𝑃(3𝐷𝑀𝑠𝑒𝑔 , 𝐱) 
(1)  



Where 𝐱 is the state that defines the pose which holds the three-dimensional position and three-dimensional rotation. RL_P is the 

function to capture the images from the segmented city model. The format of the images can be described as: 

𝐼𝑚𝑔𝐱

3𝐷𝑀𝑠𝑒𝑔
= 𝑆𝐼(𝐮𝐱, 𝐯𝐱) 

𝑆𝐼 ∈ {
Sky (0), Stone (1), Glass (2),

Metal (3), Foliage (4), Others (5)
} 

(2)  

Where 𝐮𝐱, 𝐯𝐱 are the 2D pixel coordinates of the pixel inside the image generated based on the pose x. SI is the function that assigns 

each pixel an indexed number to represent a material class. Each image stores its corresponding pose. Fig. 1 shows an example of an 

image generated from the equirectangular projection based on a defined pose. 

 

Candidate poses are then distributed around the initial estimated pose. The initial rough estimation of the pose is calculated by the 

smartphone GNSS receiver and IMU when capturing an image with the smartphone. The poses will then be reduced to the specific 

candidate poses shown in (3). 

𝐗 = {𝐱0 ⋯ 𝐱𝑠} (3)  

Where 𝑠 is the index of the poses outside of the buildings, that is generated offline and saved in a database. Candidate pose 𝐱𝑗 is 

extracted from the database 𝐗, where 𝐱𝑗 ∈  𝐗, and the subscript j is the index of the candidate poses. The corresponding image for 

each candidate pose is denoted as 𝐼𝑚𝑔𝐱𝑗

3𝐷𝑀_𝑠𝑒𝑔
. The distributed candidate images are used to compare against the smartphone image. 

 

2.3 Smartphone Image Processing 

The initial camera rotation information is used to perform rectification on the images as a preparation for further material recognition. 

The proposed image rectification assumes that the rotation of the camera image is approximately known from the output of the 

smartphone IMU. From this, horizon and keystone correction can be performed  [7]. The first kind of distortion is associated to the 

roll angle of the camera, whereas the second kind is due to the camera pitch angle. The greater the object elements that are further 

away from the horizon is, the greater the distortion is. However, the horizon area of the rectified images, which usually contains 

more distinctive features, provides a more suitable input for classification. Once combined, it can rectify the image such that it is an 

approximation image taken at horizontal and vertical level shown in Fig. 1. The rectified smartphone image was then labelled 

manually. In the future, however, we plan to utilize a deep learning neural network to identify the material automatically. After 

segmentation, the image can be de-rectified with the reverse of the image rectification process. 

  

2.4 Image Registration 

In the online stage, the candidate images are compared to the smartphone image. The image registration calculates the score of each 

candidate image. The target function is to find the candidate image with the largest similarity with respect to the semantic information 

of materials. A usual approach is to use the region or contours of each material class in the candidate image to compare with the 

corresponding material class in the smartphone image. The similarity for each segmented material is then weighted according to the 

number of pixels they occupy in the candidate image to calculate the score of each material. Finally, the score for each material is 

combined to become the score of the candidate. We considered the score of three metrics, Sørensen–Dice [8], Jaccard [9] for regional 

metrics, Boundary F1 [10] for contour metric, and calibrated a CDF based on a Gaussian distribution. The scores of each method is 

used to calculate the corresponding probability value in their respective distributions. 

𝑝𝑟𝑜𝑏∗(𝐱𝑗) =
1

𝜎∗ ∙ √2𝜋
∙ ∫ 𝑒

−
1
2

(
𝑥−𝜇∗

𝜎∗ )
2

𝑑𝑥

𝑠𝑐𝑜𝑟𝑒∗(𝐱𝑗)

−∞

 (4)  

 

TABLE Ⅰ. Parameters of Gaussian distribution 

Method Standard Deviation Mean 

Dice 0.1813 0.6686 

Jaccard 0.1567 0.5399 

BF 0.1387 0.4275 

Where ∗ is the variable that is dependent on the method, 𝜎 is the standard deviation and 𝜇 is the mean of the CDF. The combined 

probability becomes the likelihood of each candidate. 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐱𝑗) = 𝑝𝑟𝑜𝑏𝑑𝑖(𝐱𝑗) ∙ 𝑝𝑟𝑜𝑏𝑗𝑎(𝐱𝑗) ∙ 𝑝𝑟𝑜𝑏𝑏𝑓(𝐱𝑗) (5)  

A higher priority is given to the candidate image with a higher likelihood. In theory, the candidate image at ground truth should have 



the maximum likelihood. Thus, the candidate with the maximum likelihood is selected as the chosen candidate indicated in (6). 

𝐱̂ = arg max
𝐱𝑗

(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐱𝑗)) (6)  

Where arg max
𝐱𝑗

 is a function that filters the highest total score, and 𝐱̂ is the estimated candidate pose with the highest likelihood. The 

chosen candidate pose stores the latitude, longitude, altitude, yaw, pitch, and roll. 

 

3. EXPERIMENT SETUP AND RESULTS 

The experimental images were chosen with the following skyline categorizations: distinctive, symmetrical, insufficient, obscured 

and concealed. Categorizations were based on the difficulties experienced by current 3DMA GNSS and vision-based positioning 

methods. The smartphone (Samsung Galaxy Note 20 Ultra 5G smartphone with the ultra-wide-lens 13mm 12-MP f/2.2) was used to 

capture the images and to record the low-cost GNSS position and IMU rotation. The locations were chosen to test the following 

environments respectively, dense foliage (Loc. 1), along street (Loc. 2), and alleyway (Loc. 3). The positioning quality of the 

proposed method was analyzed based on the ideal smartphone image segmentation. The experimental results were then post-

processed and compared to the ground truth and different positioning algorithms, including: 

1) Proposed Multi-Material Image Registration (Combination of Dice, Jaccard and BF Metrics) 

2) Skyline Matching: Matching using sky and building class only [11]. 

3) 3DMA: Integrated solution by shadow matching, skymask 3DMA and likelihood based ranging GNSS [12].  

4) WLS: Weighted Least Squares [13]. 

5) NMEA: Low-cost GNSS solution by Galaxy S20 Ultra, Broadcom BCM47755. 

 

 

The positioning error of the dataset shown in table Ⅲ range from approximately 5.56 meters for foliage dense environments, 1.97 

meters for common high-rise environments, and 15.68 for alleyway environments. Utilizing additional material information from 

buildings, it outperforms skyline matching twice as much. The inability of skyline matching was due to the presence of foliage 

obscuring the skyline. Without an exposed skyline, it cannot match correctly and risks increasing the positioning error. 3DMA has 

shown to correct the positioning to a higher degree, coming behind the proposed method. The positioning error of WLS and NMEA 

were likely because of the diffraction of GNSS signals passing under the foliage with the combination of high-rise buildings.  

 

In terms of rotational error, the results show that, in an urban environment with features, the material of buildings can be used to 

estimate the rotation. The yaw, pitch and roll have an accuracy of 2.3, 1.4 and 1.3 degrees, respectively. However, the smartphone 

IMU pitch and roll estimation is already very accurate compared to the proposed method, and thus the proposed method will only 

TABLE Ⅱ. Locations and images tested with the multi-material image registration method 

Loc. Experimental Images 

1 Overview 1.1 (Obscured) 1.2 (Concealed) 1.3 (Obscured) 

    
2 Overview 2.1 (Distinctive) 2.2 (Distinctive) 2.3 (Distinctive) 

    
3 Overview 3.1 (Symmetrical) 3.2 (Symmetrical) 3.3 (Symmetrical) 

    



degrade the estimation. Instead, the proposed method succeeds at predicting the yaw accurately within an average of 2.3 degrees. 

Hence, the proposed method can be considered an accurate approach to estimate the heading of the user in an urban environment. 

 

TABLE Ⅲ. Positioning and rotational performance comparison of the multi-material image registration and other advanced 

positioning algorithms. 

Loc. Deviation from Ground Truth Error. Unit: meter. Deviation from Ground Truth 

Error. Unit: degree. 

Multi-Material 

Image 

Registration 

Skyline 

Matching 

3DMA WLS NMEA Multi-Material 

Image 

Registration 

Smartphone 

IMU 

𝜓 𝜃 𝜑 𝜓 𝜃 𝜑 

1.1 7.07 22.92 7.96 17.66 36.24 -4 0 -1 -27 -2.0 1.0 

1.2 4.34 22.62 3 2 -2 7 0.5 -0.5 

1.3 5.28 7.14 3 2 -1 18 -0.5 0.5 

1. Avg. 5.56 17.56 3.3 1.3 1.3 17.3 1.0 0.6 

2.1 0.66 14.80 6.87 23.29 7.94 5 1 -2 11 0.5 -1.0 

2.2 1.83 1.58 -3 -1 0 18 2.0 0.0 

2.3 3.43 2.89 1 2 -2 19 -2.0 0.5 

2. Avg. 1.97 6.42 3 1.3 1.3 16 1.5 0.5 

3.1 29.89 13.57 18.80 46.58 18.89 2 2 -2 31 1.0 -1.5 

3.2 6.61 25.53 0 1 0 28 0.5 -0.2 

3.3 10.53 24.80 0 -2 -2 27 -0.5 -0.2 

3. Avg. 15.68 21.30 0.6 1.7 1.3 28.6 0.6 1.8 

All Avg. 7.74 15.09 11.21 29.18 21.02 2.3 1.4 1.3 20.6 1.0 1.0 

 

The performance of each metric was also analyzed as shown in the heatmap in Table Ⅴ. The proposed method using Dice and Jaccard 

have very large positioning errors in Loc 1, possibly due to the lack of distinctive materials captured in the smartphone image. The 

tested location is surrounded by buildings of the same shape, size, and material. Therefore, it is a very challenging environment for 

as the candidate images share a common material distribution. It can be seen in this situation, using the BF achieves a higher 

positioning accuracy than the Dice and Jaccard, as it calculates the material contour rather than the material region. With the 

combination of the three metrics, this foliage dense environment proved suitable for the proposed method. Loc 2 demonstrated that 

the metrics complement each other when combined. As shown in Loc. 2.1, in a scene with diverse materials, the Dice and Jaccard 

have a higher positioning accuracy and achieve a higher likelihood over BF. Therefore, the combination of the three metrics leans 

towards the regional based similarities. The poor results of Loc. 3 can be explained by two conditions required for accurate 

positioning. Firstly, the images ideally should have no segmentation error. This error is not considered in the positioning results, as 

we are assessing the ideal image segmentation. Secondly, ideally there should be no discrepancies between the smartphone image 

and the candidate image at ground truth. Loc. 3 suffers from the latter as shown in Table Ⅳ. 

 

Table Ⅳ. Discrepancy between reality and 3D city model 

 Reality 3D City Model 

Textured 

  
Labelled 

  



 

4. CONCLUSION 

This paper proposes a novel multi-material image registration solution for pose (six-DOF) estimation by introducing materials as a 

new source of information. Provided that the smartphone image segmentation is ideal, our experiments demonstrate that it is possible 

to outperform existing GNSS and advanced GNSS positioning methods in urban canyons. The experiments show that our approach 

improves positioning by 45% compared to current state of the art methods and improves the performance of yaw by 8 times compared 

to smartphone IMU sensors. The pitch and roll estimated by the proposed method, however, achieves a lower performance by half a 

degree compared to the smartphone IMU sensors. Hence, it is suggested that the proposed method use the already accurate pitch and 

roll estimated by the smartphone IMU sensors. The elimination of altitude, pitch and yaw estimation will significantly reduce 

computational load as less candidate images are used for matching. 

 

The limitation of the proposed multi-material image registration comes from inaccurate segmentation. As demonstrated in this 

research, the 3D model was out of date, leading to discrepancies between the smartphone image and candidate image at ground truth. 

Therefore, it is necessary to update the utilized 3D city model frequently. 

TABLE Ⅴ. Heatmap based on likelihood of candidate with the multi-material image registration method  

Loc. Heatmap 

 

 
1 1.1 1.2 1.3 

   
2 2.1 2.2 2.3 

   
3 3.1 3.2 3.3 
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